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ABSTRACT

Rapid progress in scene reconstruction from images should

be attributed to the emergence of differentiable renderers.

Still, accurate material reconstruction remains a challenge,

as it requires modeling indirect light effects. Modern in-

verse path tracers solve this problem, but are computationally

expensive. At the same time, inverse renderers based on real-

time graphics ignore indirect light for real-time performance.

In this paper, we introduce a novel neural global illumination

model, which estimates both direct environment light and

indirect light as a surface light field. We build NeGIL, a

Monte Carlo differentiable rendering framework based on the

proposed model. Our framework effectively handles com-

plex lighting effects (such as inter-reflections) without costly

path tracing and facilitates the reconstruction of physically-

based spatially-varying materials in an end-to-end manner.

Through experiments on the challenging synthetic scenes, we

demonstrate that NeGIL significantly outperforms existing

light modeling approaches in terms of novel-view synthesis

and relighting quality.

Index Terms— inverse rendering, neural rendering

1. INTRODUCTION

Lately, AR/VR applications have attracted considerable atten-

tion to 3D scene reconstruction from multi-view images. This

problem is currently addressed with differentiable rendering.

Recently emerged, NeRF [1] performs volumetric rendering

and represents a scene as a continuous radiance field. While

scene geometry can be reconstructed from such a representa-

tion, scene appearance is not being decomposed into lighting

and materials, making it challenging to render the scene un-

der novel illumination. On the contrary, we aim at modeling

light and materials separately, so that our scene representation

is compatible with modern real-time rendering engines.

Meanwhile, differentiable versions of computer graphics

(CG) rendering approaches have been introduced. In differ-

entiable renderers, a pixel’s color is modeled via the render-

ing equation [2], which allows disentangling scene appear-

ance into components compatible with graphic engines. Dif-

ferential rendering is addressed with either path tracing [3]

or rasterization [4]. Rasterization approaches leverage real-

time approximations inherited from CG: while speeding up

the computation, these approximations poorly handle indirect

illumination and specular inter-reflections present in a scene.

In path tracing, the rendering integral is estimated via the ex-

plicit light transport simulation, which makes it possible to

capture global illumination at the expense of high computa-

tional cost.

Our goal is to combine the advantages of different ren-

dering approaches in a single method, that would decompose

color into lighting and materials and handle indirect light

without costly computations. To address this task, we pro-

pose a novel neural global illumination model, which captures

complex light effects and allows reconstructing physically-

based spatially-varying materials. In this work, we model

direct light as an environment map and indirect light as a

surface light field. The experiments on synthetic scenes with

complex illumination and specular inter-reflections demon-

strate that our approach recovers materials and lighting more

precisely than state-of-the-art approaches.

2. RELATED WORK

Nowadays, inverse rendering keeps evolving rapidly. Modern

NeRF-based approaches [5, 6] employ inventive strategies to

extract materials and lighting from the obtained reconstruc-

tions; still, materials contain severe artifacts getting revealed

in rendered images. This undesired effect is due to volumet-

ric rendering, which does not restore scene surfaces explic-

itly. Meanwhile, significant progress has been achieved in

differentiable mesh-based rendering (e.g., DIB-R [7], NVD-

IFFRAST [4], Redner[8], Mitsuba [3]), a competing inverse

rendering paradigm capable of decomposing lighting, materi-

als and geometry.

Most real-time inverse rendering approaches ignore

global illumination while computing the rendering integral.

NVDIFFREC [9] implements a differentiable version of a split-

sum image-based lighting approximation [10]. The follow-up

work, NVDIFFREC-MC [11], combines image-based lighting

with Monte-Carlo integration. These methods do not process

indirect light, thereby producing biased renderings.

NeILF [12] is likely the most similar with NeGIL, since

both methods perform a neural approximation of incident

light. Unlike NeILF, we decompose the incident light into di-

rect and indirect lighting, and parameterize indirect light with

an occlusion ray hit position rather than a primary (shading)
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Fig. 1: Scheme of our rendering framework. Given a point p, we sample a set of directions wi and detect occlusion points qi via shadow

ray casting. Incident light I∗

θ(qi,wi) is calculated as an occlusion-aware combination of direct I∗(e,wi) and indirect I∗

θ(qi,wi) lighting.

For direct light, we use a global trainable embedding e to avoid positional dependency. Both direct and indirect lighting are modeled with

a shared MLP that accepts qi and wi as inputs. A rendered color is a Monte Carlo estimate (Eq. 5). Since the framework is end-to-end

differentiable, PBR materials and neural lighting are optimized end-to-end by back-propagating gradients of image-based loss function.

ray hit point considered in NeILF.

3. PROPOSED METHOD

Inverse rendering aims at finding the optimal scene parame-

ters via analysis-by-synthesis. Given a set of reference im-

ages Rref (c) with camera poses c, the desired scene param-

eters θ are derived from the following optimization problem:

argmin
θ

Ec

[
L
(
Rθ(c), Rref (c)

) ]
. (1)

Here, Rθ(c) denotes an image rendered from a camera

pose c; L(·, ·) is an image space loss function. Following

a surface-based rendering paradigm [2], we model a pixel

color as a reflected radiance: light reflected in a direction wo

from a shading point p with a surface normal n:

Rθ(p,wo) =

∫

Ω

Iθ(p,wi) fθ(p,wi,wo) (wi ·n) dwi, (2)

The above integral is calculated over incident light direc-

tions wi on a unit hemisphere Ω. It includes an explicit

incident light model Iθ(p,wi) and an explicit light-surface

interaction model f(p,wi,wo), usually referred to as a bidi-

rectional reflection distribution function (BRDF).

In our framework, we perform physically-based render-

ing (PBR), using the Lambertian BRDF to model diffuse

reflections and the Cook-Torrance [13] microfacet shading

model for a specular lobe. The final BRDF is a parametric

function of PBR materials: diffuse albedo a, metallic m, and

roughness ρ:

fθ(p,wi,wo) =
kd(a,m)

π
+

D(ρ)F (a,m)G(ρ)

4(wi · n )(wo · n )
(3)

Our core contribution is a neural global illumination

model. We explicitly separate direct light Iθ(e,wi) depend-

ing on an incident direction wi, and indirect light Iθ(qi,wi)
depending on an incident direction wi and an occlusion

point qi. Hence, our global illumination model does not de-

pend on a shading point position p, but is parameterized with

an occlusion point qi, an incident direction wi, and a binary

occlusion mask σ:

Iθ(qi,wi) = σ · Iθ(e,wi)
︸ ︷︷ ︸

direct

+(1− σ) · Iθ(qi,wi)
︸ ︷︷ ︸

indirect

(4)

Parameterizing incident light with an occlusion point instead

of a shading point is based on an assumption of no energy

loss on a pass-through the media (absolute permeability); we

found this trick to significantly increase the lighting consis-

tency. We also found that both direct and indirect lighting can

be modeled with the same shared MLP Iθ(·, ·). This small

network expects an encoded position of an occlusion point qi
and a direction wi as inputs. To process position-independent

direct light, we leverage an optimizable global encoding e in-

stead of an actual encoded position.

Eventually, the infinity-dimensional integral (Eq. 2) is ap-

proximated via stochastic Monte Carlo integration:

Rθ(p,wo) =
∑

wi∼p(w)

Iθ(qi,wi) fθ(p,wi,wo) (wi · n)

p(wi)
,

(5)

Incident directions wi are sampled from a unit hemi-

sphere Ω according to the multiple importance sampling

strategy with cosine and GGX distributions. Following [14],

we detach gradients of PDF estimation during optimization.
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Fig. 2: Novel views of Materials and Hotdog scenes from the NeRF synthetic benchmark, rendered using NeGIL and baseline approaches.

Both NVDIFFREC and NVDIFFREC-MC miss complex light effects, while NeGIL models inter-reflections precisely.

Method Materials Hotdog Mic Ficus Chair Drums Ship Lego Average

NVDIFFREC [9] 28.10 34.04 29.61 30.50 31.05 25.60 28.50 31.17 29.82

NVDIFFREC-MC [11] 25.18 31.40 27.00 27.40 27.60 23.90 24.45 28.00 26.87

NeGIL, ours 31.40 35.56 34.31 31.22 30.19 26.93 30.33 32.87 31.60

Table 1: Results of novel-view synthesis of scenes from the NeRF synthetic benchmark. PSNR, dB↑ values are reported. NeGIL ensures

higher rendering quality for most scenes, and is superior on average.

4. EXPERIMENTS

4.1. Experimental Setup

Datasets. We evaluate NeGIL against existing baselines in

two scenarios. Firstly, we measure the novel-view synthesis

quality using the NeRF synthetic benchmark [15]. Secondly,

we assess the quality of estimated materials by relighting the

obtained assets: for that purpose, we create a synthetic dataset

comprising four challenging scenes with inter-reflections. In

all experiments, PSNR between rendered and ground truth

images is used as a metric.

Implementation details. During training, we randomly se-

lect a set of K = 6 training images at each iteration and

sample N = 5000 rays from each image. Monte Carlo in-

tegration is performed based on 128 samples during training

and 1024 samples during testing. We minimize a tonemapped

log-space L1 image loss [9], using the Adam [16] optimizer

with a learning rate of 10−3. The optimization is performed

with PyTorch [17]. Ray tracing and shadow ray casting are

accelerated with OptiX hardware, while BRDF operations are

implemented as separate CUDA kernels. We employ a mixed-

precision MLP [18]. As a result, our method converges in

18 minutes on RTX 3090, making it comparable with the

baselines: NVDIFFREC-MC requires about 25 minutes to run,

while NVDIFFREC converges in 12 minutes.

NVDIFFREC NVDIFFREC-MC

NeGIL Ground Truth

Fig. 3: Comparison of estimated direct light on the Toaster scene.

4.2. Novel-view Synthesis Results

We compare novel-view synthesized images in Fig. 2. We

zoom the rendered images to highlight the effects of model-

ing indirect light. NVDIFFREC-MC is biased: light is not prop-

agated along occluded directions, resulting in dark regions

appearing instead of reflections. NVDIFFREC is also inca-

pable to capture inter-reflections, while our approach provides

physically correct and visually plausible results. These ob-

servations are supported quantitatively (Tab. 1): NeGIL out-

performs both NVDIFFREC and NVDIFFREC-MC on all scenes

except Chair, providing the best overall quality.



Method
Novel-view synthesis, dB↑ Relighting, dB↑

Balls Toaster Bells Materials Balls Toaster Bells Materials

NVDIFFREC [9] 26.99 23.85 26.25 28.10 25.02 19.20 24.31 21.00

NVDIFFREC-MC [11] 27.25 23.79 25.99 25.70 21.82 19.58 21.61 18.11

NeGIL, ours 35.83 29.20 33.10 31.40 28.46 23.82 28.13 22.69

Table 2: Results of novel-view synthesis and relighting. NeGIL outperforms competitors on all four challenging scenes with inter-reflections.
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Fig. 4: Comparison of materials optimized with different indirect

light field parameterizations: as in NeILF [12] and NeGIL, on the

Balls scene. Our parameterization results in more accurate albedo,

roughness/metallic (green/blue) estimates.

4.3. Ablation Study

The essential part of our method is the proposed parameter-

ization of an indirect light field. To illustrate that, we com-

pare our method with NeILF [12] parameterization, which

does not consider occlusions and models the incident radi-

ance in the shading point p. On the contrary, we perform an

occlusion-aware decomposition of the incident light into di-

rect and indirect components and parameterize the light field

in the occlusion point q. In Fig. 4, we provide a visual com-

parison of two light field parameterizations. Evidently, the

quality of the restored material hugely benefits from the use

of our method.

4.4. Relighting Results

Eventually, we perform assessment of the reconstructed mate-

rials via relighting. We create a challenging synthetic dataset

of four scenes (Balls, Bells, Toaster, Materials) featuring

heavy indirect lighting effects. The training set contains 100

images rendered with the single lighting. The testing set is

rendered from 100 camera poses with 8 different environment

maps. We render the optimized assets with Blender Cycles.

As shown in Tab. 2, NeGIL demonstrates a solid quality gain

over baselines in terms of PSNR. By modeling reflections,

our approach estimates direct light more precisely (Fig. 3)

and produces more plausible materials (Fig. 6), resulting in

higher quality of rendered images after relighting (Fig. 5).

NVDIFFREC NVDIFFREC-MC Ours Ground truth

Fig. 5: Comparison of the relighting quality on Balls and Toaster

scenes. Unlike baselines, NeGIL estimates plausible materials in

reflective regions.
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Fig. 6: Estimated materials: albedo, roughness (green), metallic

(blue), and relighted renders of the Bells scene. NeGIL estimates

roughness and metallic better than baselines.

5. CONCLUSION

In this paper, we formulated a novel neural model that rep-

resents scene lighting in the form of direct environment light

and an indirect surface light field. We used this model to build

NeGIL, a differentiable rendering framework that approx-

imates incident radiance and effectively handles recursive

light effects without costly computations. We verified NeGIL

to reconstruct physically-based materials: albedo, specu-

lar roughness, and metallic, in an end-to-end optimization

pipeline. Our experiments on challenging synthetic scenes

revealed that our approach surpasses the state-of-the-art com-

petitors in a novel-view synthesis and relighting.
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